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[1] We performed laboratory experiments of Rayleigh-
Taylor instability of superposed viscous fluids where the
upper layer contains denser spherical solid particles. A
series of experiments are made by varying the viscosity and
the particle diameter, and we measure the growth rate and
the wave length of the instability. The instability consists of
fine-scaled plumes, which coalesce as they descend. Plumes
are observed to form intermittently and the particle layer
thins with time, which finally descend as blobs. We find that
the growth rate can be explained by using the linear stability
analysis for Rayleigh-Taylor instability of viscous fluids, by
taking the effective viscosity of particle bed to be 20 times
that of the fluid, and scale the thickness of the upper layer
by twice the particle diameter. Using this scaling, we find
that a partially solidified layer beneath the surface of a
lava lake may become unstable by this mechanism.
Citation: Michioka, H., and I. Sumita (2005), Rayleigh-Taylor
instability of a particle packed viscous fluid: Implications for a
solidifying magma, Geophys. Res. Lett., 32, 1L.03309, doi:10.1029/
2004GL021827.

1. Introduction

[2] Rayleigh-Taylor (R-T) instability is ubiquitous in
nature. For superposed layers of two Newtonian viscous
fluids, the growth rate and the wave length of instability are
well studied [e.g., Chandrasekhar, 1961]. An example of
such instability is possible in a solidifying lava lake, where
the heavier crystal bearing magma at the surface of the lake
may become unstable and sink. It may also occur in a
magma chamber, where the mushy layer develops from the
roof. It has been proposed that such instability may be
responsible for the formation of silicic segregations [Marsh,
2002].

[3] The presence of crystals in magma not only increases
the viscosity, but also causes the fluid to possess finite yield
strength and shear thinning viscosity [e.g., Lejeune and
Richet, 1995] and may behave similar to a granular flow.
Laboratory experiments have been used to study R-T
instability of such fluids containing particles. Thomas et
al. [1993] found that the instability take the form of plumes.
Voltz et al. [2000, 2001] studied a similar case in a Hele-
shaw like geometry and measured the growth rate and the
wave length of the instabilities for both a high packing
fraction case ¢ = 0.61 [Voltz et al., 2000], and a low packing
case ® < 0.065 [Voltz et al., 2001]. However in these
studies, no detailed results were given regarding the param-
eter (i.e., viscosity and particle size) dependences, which are
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relevant if we wish to scale to geological situations. Here,
we report the results of a series of experiments for a highly
packed case, focusing on how the growth rate and wave
length depends on viscosity and particle size spanning by
4 orders and 1 order of magnitude, respectively.

2. Experimental Methods

[4] Our experimental cell is a plastic styrol container of
35 mm height, 65 mm length and 10 mm width which
allows the flow to become 3-D. The width is thicker by
5 times compared to that used by Voltz et al. [2000, 2001].
To examine the effect of the cell size, we also perform
experiments using a larger cell with a dimension of 194 x
102 x 26 mm. Two types of viscous fluids are used. One
type is glycerine solution. It was used in concentrations of
62, 81 and 99 wt% with a viscosity range of 4.21 x 10> <
m < 7.75 x 107! Pas. The other is a silicone oil with
different batches spanning a viscosity range of 9.65 X
1072 < n < 9.75 Pas. For experiments using glycerine
solution, we placed the cell in an isothermal bath with
temperatures of 25°C and 50°C controlled at a precision of
<0.1°C. For solid particles, we used soda-lime glass beads
(Toshin Ricoh) with 8 different mean particle diameters
in the range of 50 pm < d < 850 pm. We measured the
particle diameter by a microscope and confirmed the
values provided by the manufacturer. Resulting Reynolds
number based on initial wave length and growth rate is
small; Re < 0.1.

[s] The experimental procedure is as follows. First, the
cell was inverted and the layer of glass beads was allowed
to completely settle and compact for 4—5 days. The packing
fraction of the glass beads layer was calculated to be
approximately ¢ = 0.6 from the weight and height of the
layer. This value is close to that of a dense random packing
~0.64 [Mavko et al., 1998]. This procedure was repeated
once more and then the experimental run was made. The
images were recorded using a digital video camera. The
growth rate of the instability was measured by tracking
the tip of the fastest growing plume. The average spacing of
the plumes was obtained from the side image.

3. Results
3.1. Evolution of the Instability

[6] Figure 1 shows a typical time evolution of the
instability for a fluid viscosity of 9.75 Pas and a particle
diameter of 115 um. The initial instability consists of very
fine-scaled plumes with an average lateral spacing of
1.8 mm. The lateral movement within the compacted layer
at this stage is confined to the lowermost part of the layer
with a thickness of several grain sizes. With the growth of
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(a)

Figure 1. Time-evolution of the instability of a silicone oil
and glass beads mixture with an initial packing fraction of
0.6. Fluid viscosity is = 9.75 Pas and the particle diameter
is 115 pm. The scale bar is 5 mm. (a) £ = 0 (s), (b) ¢t =
1140 (s), fine-scaled instability with an average wave length
of 1.8 mm, (c) # = 2190 (s), a developed instability from
plume coalescence and mixing, (d) # = 3810 (s), instability
with a longer wave length and formation of an arch-like
interface, (e) t = 19140 (s), final stage of hindered settling.
Reynolds number based on typical length and velocity scale
is <10~ for all stages.

the instability, adjacent plumes coalesce as they descend
downwards, and form distinct plume heads. The plume is
unsteady, and is observed to form intermittently in a manner
similar to boundary layer instability of thermal plumes. As
the top layer becomes thinner, compacted blobs of glass
beads peel off from the upper boundary. In the final stage,
particles of glass beads slowly settle and a clear fluid layer
emerges from the top whose front descends downward (i.e.,
hindered settling). A layer of glass beads at the base slowly
compacts until the thickness approach the initial value. For
the case shown in Figure 1, the particle settling takes about
17.5 hours, after which further compaction occurs.
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[7] The evolution of the location of the tip of the plume is
shown in Figure 2. The instability initially increases expo-
nentially with time, and then deviates from the exponential
growth and approach a terminal velocity. We fit the height
as a function of time as 2 = h, exp(of) by a least squares
method. For A, the initial amplitude of instability, we take
the particle diameter. We select the time range which
minimizes the least squares error, and obtain the growth
rate 0. The corresponding / used for the exponential fit is
h =228 + 0.1 mm and is uncorrelated with the viscosity
value. Similarly, we obtain the terminal velocity from the
linear fit. Up to 4—5 runs were made for the same viscosity,
and we calculate the average value and their standard
deviation. Experiments with larger cell size did not yield
systematic difference in the growth rate. By varying the
thickness of the upper layer, we found that for a thickness of
10 mm and larger, a long wave length instability occurs,
where the central part sags downwards. This instability
occurs simultaneously with the fine-scaled instabilities
described above. In this paper, we analyze the results for
a thickness of 5 mm where the long wave length instability
does not occur.

3.2. Viscosity Dependence

[8] We made a series of experiments by varying the fluid
viscosity by 4 orders of magnitude for a fixed particle
size of 50 pm. Here, we define the wave length of instability
by the average spacing between the plumes. From the
experiments, we find that (1) the initial growth rate is
approximately inversely proportional to the fluid viscosity
(Figure 3), and (2) the initial wave length, X\ = 1 mm, is
independent of fluid viscosity. We note that in Figure 3, the
variation of density difference between the fluid used and
the glass beads is small for different viscosities. It is <2.8%
for glycerine solution and <0.34% for silicone oil. We also
remark that the data points for glycerine solution and
silicone oil overlap in the viscosity range of 0.1 to 1 Pas.
The overlap for two different fluids used indicates that the
difference of interfacial tension between the glass beads and
the fluids has a negligible effect on the growth rate.

3.3. Particle Size Dependence

[9] We next made a series of experiments by varying the
particle size by an order of magnitude for two cases of fixed
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Figure 2. An example of the growth of the instability by
tracking the tip of the plume head (n = 9.75 Pas, particle
size 115 pm). The initial exponential fit and later linear fit
for terminal velocity is shown.
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Figure 3. Viscosity dependence of the growth rate for a
particle diameter of 50 pm. Circles and squares are data for
glycerine solution and silicone oil, respectively. Solid lines
are power law fit of the data with exponents of —1.20 for
glycerine solution and —1.09 for silicone oil. 2 sets of
dotted and broken lines are theoretical growth rates for
glycerine solution and silicone oil, respectively, for 2 values
of viscosity contrast (¢) shown.

viscosity. The thickness of the particle layer was kept fixed
at 5 mm. Experiments show that plumes can be identified
for all particle size, but when the size exceeds 0.4 mm, the
plume head consists of smaller number of particles and
some particles were observed to fall discretely. From the
experiments, we find that (1) the initial growth rate has a
power law dependence against the particle size with an
exponent of about 0.83 (Figure 4a), and (2) the average
wave length of the initial instability X\ (mm) has a similar
power law dependence against particle diameter d (mm) for
two different viscosities; A = 8.6 x d*7° for = 2.91 Pas
and \ = 12.0 x d®®® for n = 9.75 Pas (Figure 4b).

4. Scaling Analysis

[10] We analyze our results by applying the linear stability
analysis of R-T instability of two Newtonian viscous fluids
by Whitehead and Luther [1975]. When the viscosity of the
thin layer is very large, the wavelength of the instability is
given by

4rh

A= 1
(180¢)'/° M
and the growth rate by
_ Apgh 4/5
= e(1 —0.443¢ ) 2)
where
e=t2 (3)

i

is the viscosity ratio of the thin upper(l) to the thick
lower(2) layer. Here /4 is the thickness of the thin layer and
Ap is the density difference between the two fluids.

[11] We apply this model to our experiments. First we
consider the results shown in Figure 3. From X = 1 mm, we
substitute equation (1) into equation (2), and calculate o for
glycerine solution and silicone oil, with € as the parameter.
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Here, we calculated the o for a same set of 1 and Ap as in
the experiments. The lines connecting these points are
shown in Figure 3 and we find that € ~ 1/20 best explains
the experiments, which imply that the layer of glass beads
behaves as a viscous fluid with an effective viscosity of 20
times that of the fluid layer. From equation (1), we obtain
h ~ 0.1 mm, which shows that the effective thickness is
about twice the particle diameter. This thickness is also
consistent with our observation that only the bottom most
layer of the glass beads is mobile. We can compare this
result with the formula for the effective viscosity of a fluid
containing solid particles. A commonly used Einstein-
Roscoe equation [McBirney and Murase, 1984] gives,

€= (1 - d)/d)max)z.s (4)

where € is the ratio of viscosity of the liquid to the viscosity
of liquid containing solid particles, ®pax 1S the maximum
packing fraction. We take ¢y, = 0.6, and for € = 1/20 which
best explains our experiments shown in Figure 3, we obtain
¢ = 0.42. This result implies that the packing fraction in the
plumes is reduced from the initial value and that the
particles in the plumes have moved away from each other
which is consistent with the video images. We have also
analyzed the terminal velocity and find that the velocity
scales as ocp ', which is consistent with Stokes flow with
plume head size independent of viscosity.

[12] We next consider results shown in Figure 4. Using
the empirical relationship between X\ and d, we similarly
calculate the theoretical growth rate as shown in Figure 4
with € as the parameter. We find that € ~ 1/17 best explains
the experimental result and that effective layer thickness % is
about twice the particle size. These results are consistent
with the results obtained by varying the viscosity. The
increase of the wave length of the instability with particle
size can be interpreted as a consequence of the increase of
the effective layer thickness /# with particle size.

5. Discussion

[13] In our experimental parameter range, we found that
the initial growth rate can be explained by linear stability
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Figure 4. (a) Particle diameter dependence of the growth
rate for silicone oil of = 2.91 Pas (circles) and n=9.75 Pas
(squares). Solid lines are power law fit of the data both with
exponents of 0.83. 2 sets of dotted and broken lines are
theoretical growth rates for viscosity of 1=2.91 Pas and n =
9.75 Pas respectively, for 2 values of viscosity contrast (¢)
shown. (b) Particle diameter dependence of the wave length
of the initial instability with power law fits. Marks
correspond to cases shown in (a).

3of4



L.03309

theory for viscous fluids by introducing the effective values
for viscosity and layer thickness implying that we can
approximate the layer of solid particles as a continuum
medium. The thin effective thickness of about 2 particle size
indicate that most of the particle packed viscous fluid is
initially immobile. A possible reason for this is that the
shear stress resulting from the instability is less than the
yield strength except near the interface with the liquid layer.
The application of the linear stability theory is validated by
small Reynolds number at initial stage of the instability.
However at later stages, experiments with small viscosity
yield Re > 1. For the experiments shown in Figure 3, using
the size and velocity of descending blobs, we find that
Re > 1 for viscosity <5 x 1072 Pas.

[14] There are several situations where R-T instability of a
crystal bearing magma may become important. One is in a
lava lake which is solidifying from the surface. Another is a
magma ocean where solidification proceeds from the base
due to the pressure effect on the liquidus. Plagioclase
crystals can become lighter than melt, and may float from
R-T instability, and has been proposed as the mechanism for
the formation of lunar highlands [e.g., Anderson, 1989]. For
R-T instability to occur, the thinning rate of the mushy layer
by the instability must be faster than the crystal capture by
the progression of the solidification front. A lower limit for
the thinning rate of the mushy layer can be evaluated using
our experimental results. We consider a basaltic magma with
a density difference between the melt and crystal mush
(crystallinity 0.6) of Ap =220 kg/m>. An order of magnitude
estimate of thinning rate of the mush by the initial instability
is given by v =2 ~ hoo ~ 1077 (1) C%} (n/s). Here
the typical crystal size is used for the estimate of /. Note that
this estimate gives the lower limit since the actual thinning
rate of the crystal layer become faster with time (Figure 2)
and also as the particle layer loosens and become increas-
ingly mobile. Our experiments show that the time-averaged
thinning rate is 10 times faster than the above estimate. On
the other hand, measured rate of the progression of the
solidification front of a lava lake such as Makaopuhi in
Hawaii is of the order of 10~ m/s [Wright et al., 1976] and
the rate of the progression of the mush-liquid interface is
estimated to be comparable [Worster et al., 1993]. Although
the actual crystals are aspherical and the rheology is even
more complex, a comparison of the above two estimates
shows that thinning of the crystal mush by R-T instability
can become comparable to the measured progression of the
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solidification front, suggesting that this is an efficient mech-
anism of recycling crystals back to the molten magma. It also
provides a mechanism to weaken the crystal mush layer
which can eventually lead to subduction of rigid layer as
observed in our experiments. The plate tectonics observed in
lava lakes [Duffield, 1972] may have been initiated by such
instability.
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